Surf Forecasts and Marine Weather - No Hype - Just the Facts!
Southern Hemi Swell Hitting CA! - Video Forecast HERE (5/19/24)
Buoys | Buoy Forecast | Bulletins | Models: Wave - Weather - Surf - Altimetry - Snow | Pacific Forecast | QuikCAST | El Nino | Tutorials | Great Circles | Video


Stormsurf Mobile App

Create Your Own Surf Forecast
Swell Calculator
Swell Decay Tables
Sea Height Tables
Swell Category Table
Convert from GMT:
 to timezone:

Pacific Storm and Surf Forecast
Updated: Thursday, December 10, 2015 6:39 PM
Buoys: Northern CA - Southern CA - Hawaii - Gulf of Alaska - Pacific Northwest
Buoy Forecast:
Northern CA - Southern CA - Hawaii - Gulf of Alaska - Pacific Northwest
Pacific Links:  Atmospheric Models - Buoy Data - Current Weather - Wave Models
Forecast Archives: Enter Here
A chronology of recent Mavericks Underground forecasts. Once you enter, just click on the HTML file forecast you want to review (e.g. 073199.html equals July 31, 1999). To view the maps that correspond to that forecast date, select the html file labeled 073199 maps.html
4.5 - California & 4.0 - Hawaii
Using the 'Winter' Scale
(See Swell Category Table link at bottom of page)
Probability for presence of largest swells in near-shore waters of NCal, SCal or Hawaii.    

Issued for Week of Monday 12/7 thru Sun 12/13

Swell Potential Rating Categories
5 = Good probability for 3 or more days of Significant swell
4 = Good probability for 1-2 days of Significant swell
3 = Good probability for 3 or more days of Intermediate/Advanced swell
2 = Good probability for  1-2 days of
Intermediate/Advanced swell
1 = Good probability for 3 or more days of Impulse or Windswell
0 = Low probability for 1-2 days of Impulse or Windswell   

Strong Local Storm Off California
Another Storm Forecast for Dateline

Swell Classification Guidelines

Significant: Winter - Swell 8 ft @ 14 secs or greater (11+ ft faces) for 8+ hours (greater than double overhead).
- Head high or better.
Advanced: Winter - Swell and period combination capable of generating faces 1.5 times overhead to double overhead (7-10 ft)
Summer - Chest to head high.
Intermediate/Utility Class: Winter - Swell and period combination generating faces at head high to 1.5 times overhead (4-7 ft).
- Waist to chest high.
Impulse/Windswell: Winter - Swell and period combination generating faces up to head high (1-4 ft) or anything with a period less than 11 secs.
- up to waist high swell. Also called 'Background' swell.

Surf Heights for Hawaii should be consider 'Hawaiian Scale' if period exceeds 14 secs.


On Thursday, December 10, 2015 :

  • Buoy 106 (Waimea Bay): Seas were 8.2 ft @ 14.3 secs with swell 5.9 ft @ 13.6 secs from 315 degrees.
  • Buoy 46025 (Catalina RDG): Seas were 4.9 ft @ 13.0 secs with swell 2.8 ft @ 12.6 secs. Wind south-southeast 6-8 kts. Water temperature 64.6 degrees. At Santa Barbara swell was 3.2 ft @ 12.8 secs from 268 degrees. At Santa Monica swell was 1.9 ft @ 13.7 secs from 260 degrees. Southward from Orange County to San Diego swell was 3.7 ft @ 11.4 secs from 287 degrees.
  • Buoy 46012 (Half Moon Bay)/029 (Pt Reyes): Seas were 13.1 ft @ 13.3 secs with swell 8.6 ft @ 13.2 secs from 296 degrees. Wind west 18-21 kts. Water temp 58.5 degs.


    Buoy 46059, Hi-res Buoys

Current Conditions
On Thursday (12/10) in North and Central CA generic Gulf swell was producing waves in the 8 ft (face size) range and chopped and pretty jumbled. Down in Santa Cruz surf was 1 ft overhead and a mess with south winds and chop in control. In Southern California up north surf was head high on the sets and lined up and clean and peeling at top breaks. Down south waves were head high on the sets and clean and lined up but a bit on the soft side. Hawaii's North Shore was 8-9 ft Hawaiian and clean and lined up and very fun looking. The South Shore was flat and clean. The East Shore was getting wrap around northwest swell with lots of chop intermixed resulting in waves shoulder high or so at exposed spots and chopped by trades.

See QuikCASTs for the 5 day surf overview or read below for the detailed view.

Meteorological Overview
Generic Gulf swell was hitting all of California associated with a weak gale that tracked through the Gulf Tues-Wed (12/9). But far larger and rawer swell was in the water tracking towards North and Central CA generated by a small storm that was just 700 nmiles off North CA Wed PM (12/9) producing up 44 ft seas aimed and tracking right towards Cape Mendocino down to San Francisco.

Looking at the forecast charts a new storm is forecast over the North Dateline region Sat-Sun (12/13) resulting in 50-55 ft seas aimed east but positioned a bit north to be optimal for anyone. But beyond the storm machine is to take a break for a few days, but then start gathering energy a week out (Thurs 12/17) as another broad gale develops in the West Pacific. Longer term the return of the Active Phase of the MJO is still forecast which should result in the long awaited change towards a more permanently El Nino enhanced storm pattern.

Current marine weather and wave analysis.cgius forecast conditions for the next 72 hours

North Pacific

On Thursday AM (12/8) the jet was consolidated pushing southeast off Japan with winds 160 kts falling into a steep trough half way to the dateline and offering a little support for gale development. From there the jet ridged slightly over the dateline with winds building to 190 kts kts over the Western Gulf then was falling into a broad but shallow trough with it's apex just off extreme North CA. This trough was offering good support for gale development just off the North CA coast. Over the next 72 hours the trough off of California is to deepen and move directly over San Francisco on Fri (12/11) offering mainly the chance to produce weather there. At the same time the trough west of the dateline is to move east over the dateline and pinch off offering nothing in terms of support for gale development. But by Saturday (12/12) a new trough is to develop off Kamchatka tracking east over the Northern Dateline region with winds to 120 kts easing east-northeast into Sun (12/13) and moving into the Bering Sea. Some support for gale formation is possible in the Northern Dateline region. Beyond 72 hours a bit of a muddled pattern is forecast, with winds very light and running flat west to east up at 50N, but with a pocket of 190 kt winds building over Japan on Wed (12/16) and tracking east down at 37N, while the rest of the jet lingers up at 50N. So a bit of a break in the storm track looks likely until the jet starts reorganizing off Japan. But long range models suggest the pocket of energy over Japan is to build and push east into Thurs (12/24) forming a solid trough opening up the West Pacific for storm production. So another storm cycle looks possible.

Surface Analysis
On Thursday (12/10) swell from a broad gale in the Gulf of Alaska was hitting all of California (See Gulf Gale below). And swell from a small storm that developed imbedded in that gale was in the water moving towards California (see Local CA Storm below)

Over the next 72 hours a gale is to form off Japan on Fri AM (12/11) lifting fast to the northeast. In the evening it is to reach storm status with 50 kt southwest winds and seas building from 28 ft. On Sat AM (12/12) 50-55 kt northwest winds are to build as it races towards the North Dateline Region generating 30 ft seas starting to target Hawaii. In the evening hurricane force 65 kt northwest winds are forecast just south of the Western Aleutians with 44-50 ft seas over a solid area at 47N 175E (325 degs HI, 303 degs NCal) targeting Hawaii and the US West Coast. By Sunday AM (12/13) 55k west fetch is to be positioned just barely south of the Aleutians at the intersection of the dateline with seas 55 ft at 50N 177W aimed due east targeting the US West Coast (306 degs NCal) and only sideband fetch targeting Hawaii (335 degs). In the evening 45-50 kt fetch is to still be south of the Aleutians though the core of the storm is to be well up into the Bering Sea. Seas south of the Aleutians forecast at 50 ft at 51N 172W (308 degs NCal, 311 degs SCal). This system is to be gone after that. Possible decent long period swell to result for Hawaii and the US West Coast.

Hawaii: For.cgianning purposes expect swell arrival on Tues (12/15) building to 6 ft @ 17-18 secs late (10.5 ft Hawaiian). Swell peaking Wed AM (12/16) at 7.8 ft @ 16-17 secs (12.5 ft Hawaiian). Swell Direction: 320-325 degrees


Gulf Gale
A gale developed on the dateline Sun AM (12/6) producing a small fetch of 40 kt west winds acting on an already roughed up sea state resulting in 34 ft seas at 41N 172E targeting Hawaii (313 degs HI). In the evening 35-40 kt west winds continued and easing east with seas 30 ft at 39N 178W again targeting Hawaii (319 degs HI) and also the US West Coast. Fetch faded some Mon AM (12/7) with 30-35 kt northwest winds falling down the dateline and then pushing into the Gulf generating 28 ft seas at 36N 173W targeting Hawaii (325 degs HI) and the US well. In the evening fetch continued tracking east at 30-35 kts but covering a huge area from the North Dateline region southeast reaching a point about 600 nmiles off North CA. Peak seas were 27 ft north of Hawaii at 38N 167W (333 degs HI) with 20+ ft seas filling the Gulf. On Tues AM (12/8) the fetch as pushing east at 30-35 kts with 25 ft seas at 40N 158W (286 degs NCal) now targeting purely the US West Coast. In the evening the gale was fading with west winds 30 kts and seas 23 ft over a huge area centered near 42N 150W (290 degs NCal). This system was overtaken on Wed AM (12/9) by a new storm developing from it's remnants.

Hawaii: Swell to start fading Thurs (12/10) from 6 ft @ 14 secs (8 ft). Residuals on Fri (12/11) fading from 5.1 ft @ 13 secs (6.5 ft). Swell Direction: 325 degrees

NCal: Swell to continue on Thurs (12/10) at 8 ft @ 14 secs, but being overtaken by energy from the Local CA Storm (details below).


Local CA Storm
On Tues PM (12/8) a new mini-gale started developing north of Hawaii embedded in the remnants of the Gulf Gale (above). This gale was producing 45 kt east winds and 28 ft seas building at 37N 165W with 20-25 ft seas filling the Gulf associated with the previous gale. On Wed AM (12/9) the gale built to storm status racing east with a tiny area of 50 kt west winds generating seas of 35 ft at 39N 151W. 55 kt west winds built in the evening just off extreme North CA with 41 ft seas at 42N 140W (296 degs NCal). This system held off North Oregon Thurs AM (12/10) with 50 kt northwest winds and 44 ft seas at 44N 131W and just barely inside the NCal swell window (317 degs). The gale is to hold there in the evening still producing 45 kt northwest winds generating 33 ft seas at 43N 135W (303 degs NCal) easing east. On Fri AM (12/11) 40-45 kt northwest winds to be just off Oregon with 34 ft seas at 43N 130W and barely in the NCal swell window (318 degs). This system is to move onshore and be gone after that.

NCal: Expect swell arrival on Thurs (12/10) at 10 PM with period 18 secs and size building fast holding into 3 AM with pure swell up to 15.6 ft @ 17-18 secs (27 ft Hawaiian) and seas to 20 ft @ 17 secs. Swell fading from 13 ft @ 16 secs (20 ft) during daylight hours Fri (12/11). Swell fading Sat AM (12/12) from 12 ft @ 15 secs (18 ft). some version of west to northwest winds at 15 kts forecast over the duration. Swell Direction: 296-303 degs initially moving to 315+ degs

  North Pacific Animations: Jetstream - Surface Pressure/Wind - Sea Height - Surf Height


Tropical Update
No tropical systems of interest are being monitored.

California Nearshore Forecast
On Thursday AM (12/10) west winds were 15-20 rom the west down to Monterey Bay, but lighter south of there, the backend of a front that pushed through over night. But 50 kt northwest winds associated with a storm were just off Oregon with the front from it poised to move onshore in California. The front is to reach Monterey Bay near 10 PM Thursday with west winds to 20 kts and at that velocity up into Cape Mendocino. Solid rain for the coast from Monterey Bay northward. Snow for Tahoe and the Sierra starting at 10 AM Thursday and continuing into mid-Friday AM. Accumulation of 18-24 inches possible. Clearing high pressure to try and build in behind on Fri (12/11) but the gale is to still be hanging off Oregon setting up a gradient and northwest winds 20 kts from North CA reaching down over all of Southern CA. Light snow to continue for the Sierra through the day dissipating late. Winds to fade for a bit on Sat (12/12) while another local low builds just off Washington with the front over extreme NCal early with southwest winds there reaching south to maybe Pt Reyes late afternoon and Monterey Bay by nightfall. Rain building southward to Bodega Bay by nightfall and to Monterey Bay overnight. A few inches of snow for Tahoe late. On Sunday yet another pulse of storm energy to form over Cape Mendocino with the front from it impacting Central CA late morning. Strong northwest winds (25+ kts) expected building over North CA early and into Central CA late morning and into Southern CA late. Solid rain for all of North and Central CA late Sunday morning into the afternoon down to Point Conception and then into Southern CA for the evening. Heavy snow for Tahoe and the Sierra starting late afternoon through the evening lingering into Monday AM. High pressure is to take over Monday AM (12/14) with rain fading early and northwest winds 20-25 kts for everywhere south of San Francisco early fading to 15-20 kts late. North winds continue for everywhere but Southern CA Tues AM (12/15) at 15 kts. Light winds and clear skies forecast Wed and Thurs (12/17).

South Pacific

Surface Analysis  
No swell producing weather systems were occurring in the South Pacific.

Over the next 72 hours no swell producing fetch of interest is forecast. 


South Pacific Animations: Jetstream - Surface Pressure/Wind - Sea Height - Surf Height




Marine weather and forecast conditions 3-10 days into the future

North Pacific

Beyond 72 hours another broad gale is to start building over the Kuril Islands on Wed (12/16) with 35-40 kt west winds developing late off Japan. More of the same is forecast early Thurs (12/17) and by evening a solid fetch of 45-50 kt west winds is to be streaming off the North Kurils getting good traction on the oceans surface with seas building to 34 ft at 48N 161E. Something to monitor.

Also a local gale is forecast in the Northeastern Gulf on Thurs (12/170 generating 45-50 kt northwest winds and 32 ft seas at 47N 138W mostly.


South Pacific

Beyond 72 hours noswell producing fetch of interest is forecast.  

More details to follow...


Nino 3.4 Temps Solid - But Slowly Backing Off
Subsurface Warm Reservoir Slowly Discharging - No Recharge Potential in Sight

The Madden Julian Oscillation is a periodic weather cycle that tracks east along the equator circumnavigating the globe. It is characterized in it's Inactive Phase by enhanced trade winds and dry weather over the part of the equatorial Pacific it is in control of, and in it's Active Phase by slack if not an outright reversal of trade winds and enhanced precipitation. The oscillation occurs in roughly 20-30 day cycles (Inactive for 20-30 days, then Active for 20-30 days) over any single location on the.cgianet, though most noticeable in the Pacific. During the Active Phase in the Pacific the MJO tends to support the formation of stronger and longer lasting gales resulting in enhanced potential for the formation of swell producing storms. Prolonged and consecutive Active MJO Phases help support the formation of El Nino. During the Inactive Phase the jet stream tends to .cgiit resulting in high pressure and less potential for swell producing storm development. The paragraphs below analyze the state of the MJO in the Pacific and provide forecasts for MJO activity (which directly relate to the potential for swell production).E.cgianation of data layout below: Major sections are organized in cause-and-effect sequence starting with wind conditions/forecasts for the Kelvin Wave Generation Area (KWGA - equatorial West Pacific) followed by subsurface ocean temperature conditions (i.e. monitoring for Kelvin Waves), then ocean surface temperature conditions (i.e Nino 1.2 and 3.4) followed by atmospheric co.cgiing analysis. The 1st paragraph in each section is new/recent data and is typically updated with each new forecast. The 2nd paragraph, where present, provides analysis and context and is updated as required.

Overview: A strong El Nino is developing. It began its lifecycle in late 2013 as a primer WWB and Kelvin Wave developed. Then in early 2014 a historically strong push by the Active Phase of the MJO resulted in a large Kelvin Wave, and anomalies continued in the Spring into early Summer transporting more warm water eastward. But the cycle faltered in July due to a protracted bout of the Inactive Phase of the MJO which enabled the upwelling phase of the Kelvin Wave cycle to manifest driving cooler water east, muting warm water buildup along the Ecuador coast. Still the warm water pipe remained open, but surface temperatures near the Galapagos never recovered and any atmospheric momentum was lost. Then in early 2015, another historically strong push from the MJO occurred, effectively a repeat of the early 2014 event, invigorating the warm water transport process and, adding more heat to an already anomalously warm surface pool off Ecuador. That pool has been building steadily in spurts ever since. The paragraphs below describe the current status of various El Nino indicators, followed by a few paragraphs that tie all the pieces together and provide our analysis of what is to come.      

KWGA/Equatorial Surface Wind Analysis & Short-term Forecast:
Analysis from TAO Buoys: As of Wed (12/9) down at the surface, the TOA array (hard sensors reporting with a 24 hr lag) indicated modest west winds over a small area in the Kevin Wave Generation Area (KWGA) from 155E to 170E.  Inspecting the 00hr frame from the GFS model, a light wind pattern was in.cgiay with no winds of interest from the west or east occurring. Anomalies were moderate from the west from 155E over the dateline and east to to 135W mainly on the equator. These west anomalies continue building traction after the loss of west anomalies from 10/31-11/9.
1 Week Forecast: The CFS model indicates modest west anomalies forecast mostly east of the KWGA from 180W-120W for the next week through Thurs (12/17), weakest on 12/13. Actual winds per the GFS model are to be mainly calm through Thurs (12/17) with 10-12 kt east winds in the North KWGA area north of 3N. So far no east anomalies have occurred this year in the KWGA, not one day, and none are forecast.

A huge WWB occurred in March followed by a second smaller one (9 day duration) in early May with weaker but still solid west anomalies continuing after that through 6/10. Anomalies faded to neutral for 8 days through 6/18 as the Inactive Phase of the MJO interfered with the pattern (the first such event of the year), then weak westerlies started again on 6/18. A significant WWB (#3), the strongest of the year, started on 6/26 peaking near 7/4 then held nicely through 7/17 (22 days), the result of a historically strong Active Phase of the MJO which produced a strong and large Kelvin Wave #3, the third this year and the strongest by far. Moderate westerly anomalies redeveloped 7/29 when a Rossby Wave started interacting with the building El Nino base state, enhancing the westerly flow, developing a mini-WWB at 175E through 8/5. And westerly anomalies continued through 8/19. That is nearly 2 months of non-stop anomalies if not out and out west winds (6/26-8/19). From 8/19-8/25 lesser westerly anomalies occurred and those were mainly east of the KWGA, with dead neutral anomalies in the West KWGA. West anomalies started rebuilding on 8/26 and turned to legit west winds up at 9N on 9/3 and held in some fashion up there into 9/29 while calm winds held in the KWGA proper.  And then strong west winds redeveloped in the Northeast KWGA on 10/1 and held through 10/18, resulting in a yet another defined WWB event (#4) rivaling WWB #3 in June-July. And another small WWB started further east on 10/22 through 10/30. But by By 10/31 the Inactive Phase of the MJO appeared with west anomalies dead through (11/23). This slackening of the anomalies will likely usher in the Upwelling Phase of the Kelvin Wave Cycle after Kelvin Wave #4 terminates its eventual eruption in the vicinity of the Galapagos starting 2.5 months later or near 1/15/16. Starting 11/20 a weak west anomaly pattern started to redevelop near the dateline and that was holding through today. West wind anomalies at the surface are the hallmark of the Active Phase of the MJO and El Nino and drive Kelvin Wave production. 

Kelvin Wave Generation Area wind monitoring model: West and East New!

Comparison of 2 Strong Westerly Wind Bursts (WWB)

On left the massive WWB in late June/July that created large Kelvin Wave #3. On right the current WWB that is generating Kelvin Wave #4.
Scales are a little different but notice anomalies in the July event at 12-14 m/s est (24-28 kts) and now in Oct at 13-14 m/s (26-28 kts)
(Click to Enlarge Images)

June/July WWB October WWB


Longer Range MJO/WWB Projections:  
OLR Models: As of Tues (12/8) a modest Inactive MJO signal was over the dateline equatorial region. The Statistic model forecasts it fading to weak status 10 days out with a solid Active MJO Pattern over the Central Indian Ocean moving into the West Pacific 15 days out.  The dynamic model is not readable. NOAA indicates it should be fixed in about 1 week (12/15). The assumption is that as the Active Phase fades in the Indian Ocean, so too will the Inactive Phase over the KWGA, and west anomalies will start rebuild driven by the El Nino base state. But the timing of this remain elusive. But if the Active Phase moves east, that would not be bad either as it would fuel yet a stronger jetstream over the NPac.    
Phase Diagrams 2 week forecast (ECMF and GEFS): Only the ECMF model is updating and it indicates some form of weak 'MJO-like' active signal in the East Indian Ocean. But a week out the Active Phase is to be easing east over the Maritime Continent bound for the West Pacific ad gaining some energy. Any exact outcome is a bit up in the air right now but the possibility of the Active Phase of the MJO moving into the West Pacific is looking more likely. This leads us to believe that perhaps whatever Inactive MJO signal was trying to dominate the Pacific will fade as the Active Phase fades in the Indian Ocean or moves east. This would allow the more typical El Nino base state to re-emerge. But for now, we're still waiting for one of those options to materialize.
40 Day Upper Level Model: This model depicts a weak Active Phase over the East Pacific (which is not happening) tracking west and fading through 12/16, with a weak Inactive pattern taking over the West Pacific at the same time and tracking east, pushing into Central America on 1/4. None of this is believable.
CFS Model beyond 1 week (850 mb wind): The Active Phase of the MJO is trying to build on the dateline, but not quite fully there yet. West anomalies are light in the area with no Rossby Wave in.cgiay. More of the same is to continue through 12/30 until the MJO pushes harder east. The core of the MJO is to activate on the dateline Jan 1 with westerly anomalies redeveloping stronger 1/7 and holding into the end of the month. By 1/29 the Active Phase of the MJO is to fade slightly, then reactivating in late February. It is obvious that the MJO is not dead, regardless of theories which suggest it should be during strong El Ninos. So it makes sense that the Active Phase at some point should return (as we suspect it is now). Still, the El Nino base state should be the primary driver of Westerly Anomalies from here forward. No easterly anomalies are forecast. We are now supposedly in the core of the El Nino cycle (Oct-Dec), but the westerly anomaly pattern is still not where we think it should be given the other atmospheric signals. That is expected to change shortly if one believes the models. The core of westerly anomalies are already easing east, and are to continue to do so into the Jan timeframe, when they are expected to push to 165W and out of the the KWGA. This would shut down the warm water conveyor, with the warm pool in the east starting to decay after draining all the warm water present in what is now a massive reservoir. But, if that we to not happen, the life of this years El Nino would be extended. Something to watch for. Still the above scenario is typical timing for an El Nino from a gross level perspective. A more detailed timing estimate is provided below. 

CFSv2 3 month forecast for 850 mb winds, MJO, Rossby etc

Subsurface Waters Temps
TAO Array: (12/10) Actual temperatures remain impressive and believable with all sensors back on-line. A broad area of 30 deg temps were at depth from 140E to 152W (holding) with the 28 deg isotherm line retracting some at depth from 120W. Anomaly wise +2 deg anomalies are from the dateline eastward. +4 deg anomalies are from 146W eastward (steady). +6 degs anomalies are from 126W eastward (easing east) with a core at +7 degs starting at 118W and points east of there. These core regions are steady for the moment, but are expected to continue tracking east. Per the hi-res GODAS animation posted 12/4 the reservoir is in great shape with warm water still flowing into it from near the dateline and a large core of +5 deg anomalies in it's heart from 85W-133W (shrinking some). This is a great scenario. Warm water also appears to continue erupting west of the Galapagos at +4 degs from 100W to 122W but also making good eastward progress east of the Galapagos subsurface. Cool water is starting to undercut the warm pool though down at 125 meters and reaching east to 130W.
Sea Surface Height Anomalies (SSHA):  (12/4) Heights are fading and moving east, but still at high levels. 0-+5 cm anomalies are over the entire equatorial Pacific starting at 180W (steady). Peak anomalies at +20 cm are gone. +15 cm anomalies extending from the Galapagos at 90W to 130W and reaching from 5N to 5S (shrinking). +10 cm anomalies are now pushing to Ecuador and tracking north along the Central America Coast, typical of El Nino. All regions are pushing east suggesting maybe the westward di.cgiacement character of this El Nino event is finally changing, or the warm reservoir is discharging, normal for the later phase of the El Nino lifecycle.
Upper Ocean Heat Content: (12/4) is shrinking but still at very impressive levels indicating +0.5-1.0 deg anomalies are from 154W to the Galapagos (easing east). +1.0-1.5 degs anomalies are easing east from 144W eastward attributable to WWB #4/Kelvin Wave #4. +1.5 deg anomalies are easing east from 139W and points east. A large pocket of +2.0 deg anomalies easing east from 130W into Ecuador. And +2.5 deg anomalies remain present and are easing east while shrinking between 121W->94W (with a 24 deg/1,440 nmile width, down from 30 degs/2400 nmiles). 2.0-2.5 anomalies are now pushing into Ecuador (starting 12/1 and the first time since early Oct). The Downwelling Phase of Kelvin Wave #4 is underway in the east. This El Nino remains slightly westward di.cgiaced for the moment, but that might change. The Upwelling Phase of the Kelvin Wave cycle is also evident in the west (just east of the dateline) with the eastward retreat of of all temperature bands, the result of the Inactive Phase of the MJO cycle which started 10/31 and continues to date but is fading. And with that, the reservoir appears to be discharging with no other legit and believable WWB in sight. The peak of El Nino from a subsurface warming perspective has already passed.

A strong Kelvin Wave impacted the Ecuador Coast in May-June with a second somewhat weaker one impacting it in June. The third and strongest so far is erupting, but somewhat westward di.cgiaced just west of the Galapagos and not as overtly strong as one would expect, being rather a steady bleed rather than a gully washer. In fact, a careful analysis indicates it has peaked. A previous pause in warming near Ecuador occurred starting mid August, attributable to the Upwelling Phase of the Kelvin Wave Cycle, but ended on 9/20. The subsurface configuration suggested there were 2.5+ months of warm water in the reservoir (till Dec 15) and some of that water is extremely warm (7 degs above normal). And now Kelvin Wave #4 is developing, expected to extend the life of the reservoir. The peak of Kelvin Wave #3 was forecast to occur roughly on 10/4.  We revised it a few times since then, but looking back we've determined it was correct if not a little late (more below). But another equally strong WWB occurred peaking in 10/10 resulting in Kelvin Wave #4, which should peak 2.5 months later, or near 12/25 (nice Christmas present) and advecting west a month after that into Nino3.4 on 1/25. But it appeared to start erupting west of the Galapagos on 10/28 peaking 11/17. Typical of the character of this El Nino event, it is maddeningly slow and under whelming if viewed on a daily basis. But the overall impact, is marked and historically strong. With the WWB/Kelvin Wave #4, a more aggressive face of this El Nino appeared during the Oct-Nov timeframe. But the Inactive Phase of the MJO took over on 10/31, and with it the subsurface warm pool started discharging, with no significant westerly anomalies nor warm surface water left in the West Pacific to be driven to the east in the form of a Kelvin Wave.  

Surface Water Temps: The more warm water in the equatorial East Pacific means more storm production in the North Pacific during winter months (roughly speaking). Cold water in that area has a dampening effect. Regardless of what the atmospheric models and surface winds suggest, actual water temperatures are a ground-truth indicator of what is occurring in the ocean. All data is from blended infrared and microwave sensors.
Satellite Imagery
(12/10) Overall the picture remains solid and is getting a little more defined near the South America coast in the past week. And fingers of warm water appear to be radiating northeast from the equator up into Baja and Central America. And a solid volume/concentration of warm water is flowing into the Nino3.4 area. The warm water signal covers the entire equatorial Pacific from the dateline eastward with embedded pulses of warmer water from the Galapagos west. The overall signature is the strongest of any point so far this year and of any time since mid-July 1997. Compared to '97, 2015 anomalies are warmer in the Nino3.4 region, but have less concentration and coverage in Nino1.2. Coverage south of the equator is not growing any down the Peruvian coast, and cannot complete with '97 in that regard, but is still very solid. Along the West African Coast, cool water is gone, being r.cgiaced by neutral temp water. Very warm water continues off the US West Coast but is not as defined as in Fall. Still very warm water extends west the whole way to Japan but unrelated to this years El Nino, attributable to the building warm phase of the PDO. Cool water has lost coverage over North Australia, presumably due to the presence of the Active Phase of the MJO in that area. This is atypical of a strong El Nino. Warming water continues near Madagascar suggestive of a building Indian Ocean Dipole.  
Hi-res Nino1.2: Per the latest image (12/9) temps were solid and expanding in coverage some but no 4.0 deg anomalies remained present. +2.25 anomalies covered from the Galapagos to Ecuador with decent width, but not overtly impressive. Peak temps are down some in the past week. This continues to indicate the Kelvin Wave eruption area is westward di.cgiaced, with occasional pockets of warmer water sneaking in, but not steadily. Warming in this area peaked on 7/14 then crashed and has been trying to rebuild ever since.
Galapagos Virtual Station: (12/9) Consistent with satellite imagery above, anomalies wre fading, at 4.0 degs, down from +4.37 degs on 12/7, up from +3.9 on 12/2, up from +3.7 on 11/30, but down from +4.05 on 11/24 and up from +3.73 on 11/21 and rebounding from +3.4 degs on 11/17. Anomalies were steady between 10/2-10/22, running between +3.4-3.8 degree above normal, but then moved into the +4.0-4.3 range starting 10/23 and held to 11/14, then fell but are now rebuilding. For the most part this data is irrelevant since the main Kelvin Wave Eruption Area is focused west of the Galapagos.
Hi-res 7 day Trend (12/9): Moderate warming is occurring over a broad area down the South American Coast and between the Galapagos and Ecuador south of the equator out to 100W. It looks like Nino1.2 is trying to make some progress.
Hi-res Nino 3.4: 
(12/9) The latest image depicts slightly shrinking coverage, but still very good overall. Coverage of +2.25 deg anomalies is steady if not shrinking in terms of width near 140W. Peak temps are holding coverage at +4.0 between 98W to 115W. Overall the pattern remains solidly impressive. All this warm water is now mostly attributable to Kelvin Wave #4. This remains unbelievable on a historical level and still breaks records set in the '97 El Nino. Temps between 160W-180W are building some, with +2.25 deg anomalies reaching west to 179W and a little broader than a few days ago. No +4 deg anomalies are present. This warm pool is advection west of warm water resulting from eruption of Kelvin Waves #3 and #4. 
Hi-res Overview: (12/9) The El Nino signal is unmistakable and the strongest since 1997, and stronger than anything in the satellite age prior to that. It even beats '97 in the Nino3.4 region. The main focus continues to be the eruption ports that developed starting 10/28 and continue today. The intensity of warm anomalies in the eruption site west of the Galapagos peaked on 11/19, not as intense as a previous peak on 9/19, but covering a larger area. Today the warmest temps have less coverage than the November peak. As of 12/9 there is a unbroken string of +4 deg anomalies from 98W to 120W with pockets from 120W to 140W and between Ecuador and the Galapagos too. The mid-zoomed image depicts the warmth actually building in coverage over the past week and building west with a broad pocket of solid +4 deg anomalies from 98W-120W with 2 embedded areas at +5 degs and more +4 deg pockets at 125W and 135W and between 80W to 85W. This remains impressive, but the peak was on 11/23. And this warm water is advected west. Kelvin Wave #3 peaked on 9/19 with mult.cgie pockets of +5 degs anomalies occurring. The number and intensity of those vent ports faded, then redeveloped and increased significantly starting 10/28 and peaked on 11/23. That peak was attributable to Kelvin Wave #4. We can't stress enough the importance of this upgrade and the effect this will have a few weeks out as it advects west into Nino 3.4 proper. Still, we are saying Kelvin Wave #3 peaked on 9/19 (we estimated 10/4). Those waters advected west, with peak warming supposedly occur in Nino3.4 one month later, or 10/19. But with the new vent ports developing 10/28, yet more warm water is tracking into Nino3.4.

Historical Comparison of Strong El Nino's
Updated! Images built using 2 data sets - Monthly OISSTv.2 (left) & ERSSTv4 (right) This years data valid through November.
Both images/datasets suggest this is the warmest the NINO3.4 region has ever been. Now the question becomes: Will that translate in weather and swell? If the theory that temps in this area translate in stormier weather, then the answer is obvious.
Requisite Disclaimer - Current performance is no indication of future performance.
(Click to enlarge)

OISSTv2 data ERSSTv4 image


Kelvin Wave #3 Eruption Evolution
(click to enlarge)


Other Sources
TAO Data: +1.0 anomalies are in control over the entire equatorial East Pacific, the warmest in years, advecting west from the Galapagos covering the entire area west to the dateline and beyond (expanding west to 165E). We're monitoring the +0.0 anomaly line on the equator to see if it's moving east. Today its off the charts but was formally at 140E (steady and well west). +1.5 deg anomalies are building to the west reaching unbroken to 175E. There is also a solid area of +2.0-2.5 deg anomalies extending from the Galapagos to 178W. A pocket of +3.0 deg anomalies is building from 107W-163W. A former pocket of +3.5 anomalies is gone. Overall the warm water signature is steady and impressive.
Nino1.2 Daily CDAS Index Temps: (12/10) Temps are muddling along holding at +2.351, holding there since 11/30, up from +1.708 11/19, down from +2.106 (11/5), down form +2.422 on 11/1. Previously temps peaked for 5 days at +2.581 near 10/8 and previously spiked at +3.0 degs on 7/3, faded, then spiked again on 7/13 at +3.0 degs and yet again at +3.0 degs on 7/22.
Nino 3.4 Daily CDAS Index Temps: Today (12/10) temps are down at + 2.707, about steady from 2 days ago at +2.709 and down some compared to +2.840 on 12/6, down slightly from +3.022 (12/3) and up from +2.967 (12/1), steady from +2.980 (11/27), up slightly from +2.900 on 11/23, down 15 hundredths from 11/20 at +2.915, down one tenth of a degree from the all time peak of +3.041 on 12z 11/19. This temp beat the previous all time high of +3.028 degs (12Z 11/17), up from + 2.986 as of (12Z 11/15) Nov 15. Overall temps have not been below +2.0 degs since 8/21. and are right at +2.9 or greater since 11/13. Very Impressive. This continues the upward trend with previous peaks at +2.780 (12z Nov 12) up from +2.704 (11/5 12Z). And more previous peaks for this event were: +2.512 (10/24 06z) besting the previous record of +2.468 (10/20), up from +1.824 on 10/8, and beating the previous peak of +2.44 on 10/3. The thought is Nino 3.4 temps are about peaked out now (until Kelvin Wave #4 starts to erupt and advect west). Previously temps were up from +2.037 on 10/1 and +2.077 on 9/17. The previous all time peak for this event was +2.24 degs on 8/23 (one day). That was crushed on 10/3 at +2.44, and now bested on 10/20 at +2.4678. By any standard we are at a Strong El Nino levels. We expect these temps to continue upward for the foreseeable future.
Nino3.0 CDAS Index Temps: The '97 El Nino peaked in this region at 3.6-3.7 degs mid-Nov to mid-Dec (OISSTv2). That is the goal. Today's (12/10) value was +2.942, down some from (12/8) when it was +2.988 and stead compared to the 12/6 value of +2.989, up slightly form +2.919 (12/3), up from +2.905 (12/1), down slightly from +2.990 (11/28) up from +2.855 (11/23), up some from + 2.799 on 11/21, and down from +2.957 on 11/19. So we have some distance to go to be comparable to '97 in this region.
Nino3.4 Weekly Temps (OISSTv2 - 1981-2010 base period - centered in Jan 3 1990): On 12/1 they were +2.9 (in both Nino3.0 and 3.4), down from 11/25 when they were +3.0 (in both Nino3.0 and 3.4), and down from the peak of +3.1 on 11/18, up from 11/11 when temps in Nino3 and 3.4 were both +3.0 degs. On 11/4 they were both +2.8. In '97 (11/26) peak temps in Nino3.4 reached +2.8. So we have beat that mark. But Nino3 temps in '97 reached +3.6-3.7 degs. We still have +0.6 degs to go. Insert Subsurface/Surface image here This years event is westward di.cgiaced somewhat like the '82/83 super El Nino event, but not as strongly so. The main evidence for this is the continued eruption of Kelvin Wave #3 west of the Galapagos with weakened warming east of there.  This suggests the Walker circulation is not di.cgiaced as far east as in '97 but more like '82/83. Best analysis from upper level charts suggests it's core is at 110W. At this time we're unsure what the effects on rainfall would be. Total rainfall in San Francisco in '82/83 was 38.17" (+16.38") versus 47.22" in '97/98 (+25.43"). The long term average is 21.79". In LA in '82/83 it was 31.28" (+16.47) versus 31.01" in '97 (+16.2"). Long term average 14.81". Regardless, both events were well above average. This also suggests the core of storm production will be north of the most warming. So rather than the Eastern to Central Gulf of Alaska being the focus, it might be more in the Western Gulf. This is actually a good thing relative to California by perhaps giving resulting swells more room to groom themselves before hitting the coast. This might bode not so well for Hawaii, with large stormy conditions the result. Of course, this is just speculation at this time. 
Nino3.4 Monthly Temps (November) The centered Nino3.4 temps for the month of November were released 12/3 and came in at +2.34 degs C (ERSSTv4), beating the highest temp recorded in '97 (Nov - +2.32 degs) and beating the peak of the '82 El Nino (Dec +2.21 degs). And this years Oct temps were adjusted upwards to +2.0 degs. See updated graphs above. As of right now for a one month average, this put this years El Nino stronger than '97 and therefore the strongest ever (based on a one month SST reading). The ONI uses a 3 month running average. That is the final determiner. Very interesting.

SST Anomalies on 9/14/2015 and what is driving them from below
(Click to enlarge)

SST Image

Given the westward di.cgiacement in this years El Nino, we are interested in the relative effect on the jetstream as compared to previous strong ENSO events.  That's is, how does one compare eastward versus westward di.cgiaced El Nino events. This years El Nino has relatively weak Nino1.2 anomalies compared to '82 and '97, but much warmer in Nino4.  Do Nino3.4 temps accurately take that difference into account? We decided to find out. First we made an assumption: It is the total volume of warm water in the equatorial East Pacific, not just in Nino3.4 that defines the magnitude of the resulting El Nino atmospheric response. Whether that water is eastward or westward di.cgiaced, it makes no difference, as long as one can measure the total heating footprint, the bulk atmospheric response should be the same, just the center of core storm production would be either more east or west di.cgiaced.Next we needed to determine how to measure total heating footprint. There is a good historical record for anomalies in Nino1.2 (spanning 10 degrees longitude - 80W-90W), Nino3 (spanning 60 degrees - 90W-150W) and Nino4 (50 degrees - 150W to 150E).  If one performs a weighted average of the SST anomalies for the 3 zones, a composite anomaly can be obtained. So we did that for recent strong El Nino events. The results indicate a pattern very similar to si.cgie Nino3.4 analysis, that this years event is in the top 2 for this time of year and the top 3 of all time (discounting the more historically correct 'centered' data). Here's the data:

Note: ERSSTv4 'centered' data is not available for Nino1, 3 and 4 regions, only Nino3.4.

Pacific Counter Current:  As of 12/6 the current was strong from the west north of the equator from 125E to 130W with solid pockets on the equator at 130-160E and 170W. Anomaly wise - One pocket of solid west anomalies were between the dateline to 160W on the equator. Otherwise everything was normal. There were no pocket of east anomalies indicated.  This is somewhat impressive as long as one does not compare it to '97, because if you do, there is no comparison. In '97 the current was solidly east from 170E to 130W mostly north of the equator with anomalies very strong from 165E to 120W on the equator.    

SST Anomaly projections
CFSv2 model - PDF Corrected:
 This data is worthless. We are not reporting on it anymore.
Uncorrected Data is also worthless depicting peak temps to +2.95 degs Nov 5, and holding to early December then falling to +2.5 degs Jan 1. In reality, temps are holding steady at near peak levels.
IRI Consensus Plume: The mid-Nov Plume has upgraded again, suggesting peak monthly temps between +2.4 degs (Statistical models), +2.6 degs (Dynamic) with the CPC consensus at +2.5 occurring during Dec. The mid-July consensus was spread between +1.5-2.0 degs, the mid-Aug between +2.0-2.5 degs and the mid-Sept between +2.1-2.5 degs. See chart here - link. If one is to make a direct comparison of the 2015 event to '97 at this time of year based on the areal coverage of water temps, there is now a valid comparison. '97 imagery had all the warmth crammed up along Ecuador. This years event is focused west of there, with more warmth in Nino4 than in '97 (see analysis above).

Atmospheric Co.cgiing Index's (lagging indicators rather than driving oceanic change):   
Daily Southern Oscillation Index (12/10): Was falling from -21.50. Of note: The 97 El Nino had daily values at -40 to -50 in early Nov with one spurt to -76 Jan 30-31st. A peak reading so far in this 2015 event was -49.70/-46.60 on Oct 3 & 4 and then -42.20 on 10/14 and -47.50 on 12/3. 
30 Day Average: Was falling from -8.67. The peak low was recorded on 10/9 at -22.72, beating the previous peak low of -20.95 on 8/21, with the previous lowest at -20.49 on 7/18/15. This is exactly where we want to be (at -20 or lower).  
90 Day Average: Was rising some at -14.88. A record low of -19.28 occurred on 10/16 and was matched on 10/20. The previous record low was -18.56 on 9/16. This is the critical threshold we've been anticipating (values -18 or lower), providing yet more evidence of strong atmospheric co.cgiing. We want to see it hold there, and that goal is looking more possible. It has been at or below -10.0 since early July and -15.0 since 9/4 and on a steady fall ever since. The 90 day SOI bottomed out at a low reading on 8/5 at -14.17, then beat it on 9/2 at -15.23, beating that on 9/16 at -18.56 and now -19.28 on 10/16. 
Trend (looking for negative SOI numbers, indicative of the Active Phase of the MJO or El Nino): The near term trend based on the daily average was indicative of a building El Nino base state being driving by the demise of the Inactive Phase of the MJO. The longer term pattern was indicative of a building El Nino base state.
SOI Trend - Darwin (looking for high pressure here): Weak low pressure was over Southwest Aust on 12/10 as it has been for weeks, with no immediate change forecast through Thurs (12/17). we're dying to see high pressure take over East Australia. But the Active Phase of the MJO in the Indian Ocean needs to fade and be r.cgiaced by the Inactive Phase for that to occur. It is high pressure over Australia in NHemi winter months that is the preferred pattern for El Nino development in the Pacific.
SOI trend - Tahiti (looking for low pressure here): On 12/10 a weak trough (low pressure) was over Tahiti. This trough is to hold till Wed (12/16) then be r.cgiaced by very weak high pressure through Thurs (12/17). The SOI should hold negative, but not markedly so. If a Super El Nino is in development one would want to see continuous local lows near or over Tahiti. We're seeing perhaps a start of that pattern.  
SOI 1 week Forecast: The net result is to be a trend of SOI values holding weakly negative. The Inactive Phase of the MJO in the West Pacific has been having significant impact. Hopefully that is poised to change a week out.        
SOI Analysis: During El Nino, the SOI functions as a measure of how well the ocean and atmosphere are co.cgied. Current numbers suggest good co.cgiing though not great, but getting better footing slowly but steadily (notice the 90 day average trend). This pattern is to only change for the better as the El Nino base state builds as we move into Fall. A consistent 90 day average of -18 is our target, indicative of a strong El Nino.
Southern Hemi Booster Index (SHBI) Analysis (which is theorized to supercharge a developing El Nino): Per the past 5 day 850 mbs anomaly charts there was no evidence of a south flow in.cgiay. Per the GFS model no real south flow is projected through Thurs (12/17). It is high pressure over Southeast Australia that sets up the required southerly surface flow in the Tasman Sea. South and southeast wind anomalies have been in this region off and on for weeks now (previous run 7/29-8/10, this run 8/13-8/18), then returning consistently 9/18 through 10/25, then fading. The SHBI appears to be offering no support for this years El Nino development at this time.  
ESPI (like SOI but based on satellite confirmed cloud cover): (12/10) today's value is now turning downward at +1.25, after rising through 12/8 to +1.37, up from +0.89 (12/1), up from +0.57 (11/23), down from +0.97 (11/15). This is a good trend suggesting that perhaps we're recouping from the lowest we've seen it on 12/1. Maybe the Inactive MJO in the Pacific is fading. But it is also typical for the ESPI to start falling as we move into Winter. This is primarily a summer and early Fall index during El Nino years. The most recent high value was +2.40 on Sat (10/17). It had been holding in the +1.95-2.20 range for weeks (thru 10/13) with only minor fluctuation. The ESPI was steady in the +2.5 range through 8/10, then began falling, to +2.42 on 8/18 and bottoming out at +1.78 on 8/26. It started rebuilding on 8/29 at +1.89 holding at +1.87 on 9/18 and up to +2.2 on 9/24 reaching +2.3 on 9/26, then down to 2.02 on 9/29. Historically the peak of the '82 El Nino was +2.2 and the '97 event +2.85. This suggests the '15 El Nino is reasonably well co.cgied with the atmosphere, more so than some of the other indices indicate. Monthly ESPI values are as follows: July 3.76, Aug 2.34, Sept 2.1, Oct 2.3. '97 had two peak values at +2.99 in Aug and +3.06 in Sept.  2015 had +3.7 in July followed by +2.33 and +2.20 in Aug and Sept and 2.3 in Oct. to complete with '97.
Multivariate ENSO Index (MEI) (Nov) The current ranking is up some, at +2.31, up barely from +2.23 (Oct), down from it's peak of +2.53 in Sept, and from +2.37 in Aug. Still this MEI value has the 2015 event as the second 3rd strongest El Nino ever, and equivalent to 1982 for this time of year. So we continue mid-way between the '82 and '97 events, in strong El Nino territory presumably moving towards the Super El Nino range. The top 5 events since 1950 in order are: '97, '82, '91, '86, and '72 with '97 and '82 classified as 'Super El Nino's' because they reached 3 standard deviations (SD) above normal. '91 and '86 were at about 2.2 and 2.1 respectively with '72 peaking at 1.8 SD's above the norm. We've already beat all those. Suffice it to say we are somewhere between '82 and '97 in term of of atmospheric co.cgiing per this index. Most impressive.  
North Pacific Jetstream (12/10) Detailed analysis is in the NPac Short Term Forecast above. In short, the jet started the Fall transition influenced by El Nino, looking decent but not exceptional. But then the Inactive Phase of the MJO took over and has had a dampening effect and will continue to do so till the Inactive Phase is over.   

Comparing the 2015 El Nino to '82 and '97
Full Sized Chart
(Click to enlarge)

Conclusion (Updated 11/17): WWB #3 peaked on July 4, with the resulting Kelvin Wave peaking on Sept 19 west of the Galapagos, or a roughly 2.5 month travel time.  Likewise those warm waters advected into Nino3.4, peaking about one month later, or 10/19. Peak atmospheric influence should occur approximately 2 months later or 12/20. Then WWB #4 developed of near equal strength, peaking on 10/15, which resulted in formation of Kelvin Wave #4. Using the same te.cgiate, peak eruption of Kelvin Wave #4 is expected on 12/30/2015 (westward di.cgiaced), and advecting into Nino3.4 and peaking roughly 1/30/2016 with peak atmospheric influence on approx 3/30/2016. This suggests peak atmospheric perturbation will occur in the window from 12/2/2015-4/2/2016, or well di.cgiaced later in the Winter as compared to the '97/98 event, and somewhat like the '82/83 event. The Inactive Phase of the MJO took control 10/31, and is expected to usher in the Upwelling Phase of the Kelvin wave Cycle starting 1/31/16. The resultant slackening of peak water temps won't reach Nino3.4 till 3/1, and won't hit the atmosphere till 5/1.  By then, the effective lifecycle of El Nino for the Winter of 2015-2016 will be over. And any westerly anomalies projected for the KWGA in the Dec-Jan 2016 timeframe will contribute nothing to Kelvin Wave production and jetstream a.cgiification just due to the time it will take for a resulting Kelvin Wave to migrate east. But those anomalies could help the atmosphere like the Active Phase of the MJO does, fueling jetstream energy. That is the primary contribution of westerly anomalies from here forward. 

In terms of comparative strength based on Nino3.4 temps, 2015 is in the same ballpark based on OISSTv2 weekly data. Based on ERSSTv4 data (a more conservative data source) '97 peaked at +2.32 degs with 4 months of +2.0 degs anomalies and '82 at +2.21 degs with 2 months temps greater than +2.0 degs. 2015 is looking to produce a +2.1 degree one month average based on very rough data today, with a huge reservoir of anomalies still venting to the surface and Kevin Wave #4 still migrating east.  But, coverage of warmer than normal water and it's affect on the atmosphere is not limited to just the Nino3.4 area. Nino3 and Nino1.2.cgiay a role. It's is the total areal coverage of the warm water footprint that defines the impact on the atmosphere. Temps in Nino3 in this years event are at +3.0 degs, but peaked at +3.7 degs in '97. Conversely temps in Nino 4 in this years event beats temps in '97. All graphed out, one gets the sense that '97 and 2015 are very different events, but similar in total atmospheric effect. It's not just magnitude of the peak temps that make a difference atmospherically, but also the duration of those anomalies. The longer and stronger the anomalies, the greater the atmospheric response. At this time the expected atmospheric affects should be significant, though di.cgiaced somewhat later in the season. 

See imagery in the ENSO Powertool


External Reference Material: El Nino Southern Oscillation (ENSO), Madden Julian Oscillation (MJO), Pacific Decadal Oscillation (PDO), Southern Oscillation Index (SOI), Kelvin Wave

Add a STORMSURF Buoy Forecast to your Google Homepage. Click Here: Add to Google
Then open your Google homepage, hit 'edit' button (top right near graph), and select your location

MAVFILM Jeff Clark Inside Mavericks

Local Interest

Updated - Stormsurf Video Surf Forecast for the week starting Sunday (12/6):
For automatic notification of forecast updates, subscribe to the Stormsurf001 YouTube channel - just click the 'Subscribe' button below the video.

- - -

Click here to learn more about Casa Noble Tequila! Casa Noble Tequila If you are looking for an exquisite experience in fine tequila tasting, one we highly recommend, try Case Noble. Consistently rated the best tequila when compared to any other. Available at BevMo (in California). Read more here:

Mavericks Invitational Pieces Featuring Stormsurf:

Time Zone Converter By popular demand we've built and easy to use time convert that transposes GMT time to whatever time zone you are located. It's ion left hand column on every page on the site near the link to the swell calculator.

Stormsurf Google Gadget - Want Stormsurf content on your Google Homepage? It's si.cgie and free. If you have Google set as your default Internet E.cgiorer Homepage, just click the link below and a buoy forecast will be added to your Google homepage. Defaults to Half Moon Bay CA. If you want to select a different location, just click on the word 'edit', and a list of alternate available locations appears. Pick the one of your choice. Content updates 4 times daily. A great way to see what waves are coming your way! .xml

Free Stormsurf Stickers - Get your free stickers! - More details Here

Read all the latest news and happenings on our News Page here

Surf Height-Swell Height Correlation Table


Contact | About | Disclaimer | Privacy
Advertise/Content | Links
Visit Mark Sponsler on Facebook Visit Stormsurf on Instagram Visit Stormsurf on YouTube
Copyright © 2024 STORMSURF - All Rights Reserved
This page cannot be duplicated, reused or framed in another window without express written permission.
But links are always welcome.
Buoys | Buoy Forecast | Bulletins | Models: Wave - Weather - Surf - Altimetry - Snow | Pacific Forecast | QuikCAST | El Nino | Tutorials | Great Circles | Calculator